Quantum Control midterm Examination

(Introduction of Quantum Mechanics) 

◆ Chapter 1 –
1. Consider the Gaussian distribution
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     where A , λ, and 
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     (a) Use 
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     (b) Find 
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     (c) sketch the graph of 
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2. At time t=0, a particle is represented by the wave function.
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  where A, 
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 are constants.
     (a) Normalize 
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(b) Sketch 
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as a function of 
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(c) where is the particle most likely to be found, at time t=0 ?
(d) what is the probability of finding the particle to the left of 
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? Check your result in the limiting cases 
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     (e) what is the expection value of 
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   3. Consider the wave function
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     where A , λ, and 
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 are positive real constants.

     (a) Normalize
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     (b) Determine the expectation values of x and x2.

     (c) Find the standard deviation of x. Sketch the graph of 
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        the points (〈x〉+σ ) and (〈x〉-σ ) to illustrate the sense in which σ represents the 

        “spread” in x. What is the probability that the particle would be found outside this range?

   4. Calculate    
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     (This is known as Ehrenfest’s theorem; it tells us that expectation values obey Newton’s

     second law.)

   5. A particle of mass m is in the state
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     where A and a are positive real constants.

     (a) Find A.

     (b) For what potential energy function V(x) does 
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 satisfy the Schrödinger equation?

     (c) Calculate the expectation values of x , x2, p, and p2 .

     (d) Find σx and σp . Is their product consistent with the uncertainty principle?

◆ Chapter 2 –
 6. A particle in the infinite square well has the initial wave function
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(a) Normalize 
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 and graph it.

(b)Compute 
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, and 
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 at  t=0

(note: this time you can not get 
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 by differentiating 
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, because you only know 
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 at one instant of time)

    7. Consider the double delta-function potential
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      where and are positive constants. 
(a) Sketch this potential

(b) How many bound states does it possess? Find the allowed energies, for 
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 ,and sketch the wave functions.

8. A particle in the infinite square well has the initial wave function
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 Find 
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 as a function of time.

   9. Solve the time-independent Schrödinger Equation for an infinite square well

with a delta-function barrier at the center: 
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Treat the even and odd wave functions separately.

Find the allowed energies and wave functions. Comment on the limiting cases 
[image: image38.wmf]¥

®

a

 and 
[image: image39.wmf]0

®

a

?
· Chapter 3 –
10. A Hermitian linear transformation must satisfy 
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. Prove that it is sufficient that 
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. Suppose you could show that 
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 for every member of an orthonormal basis. 
11. 
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(a) Verify that T is Hermitian

(b) Find its eigenvalues ( note that they are real)

(c) Find and normalize the eigenvectors (note that they are orthogonal)

(d) Construct the unitary diagonalizing matrix S, and check explicitly that it diagonalizes T 
12. A unitary linear transformation is one for which 
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(a) Show that unitary transformation preserve inner products, in the sense that
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        (b) Show that the eigenvectors of a unitary transformation belonging to distinct eigenvalues are orthogonal

    13. Imagine a system in which there are just two linearly independent states:
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The most general state is a normalized linear combination:
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      Suppose the Hamiltonian matrix is
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   where g and h are real constants. The (time-dependent) Schrödinger equation says
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(a) Find the eigenvalues and (normalized) eigenvectors of this Hamiltonian
(b) Suppose the system starts out (at t = 0) in stste 
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. What is the state at time t?
◆ Chapter 4 –

14. Derive a free particle in Heisenberg picture
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15. Derive 1-dimensional Harmonic oscillator in Schrödinger picture

   (a)
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(b)
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16. Derive 1-dimensional Harmonic oscillator in Heisenberg picture

(a) 
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(b) 
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(c) 
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◆ 
17. Consider a quantum system with M external control-linear forces. 
Assume M =1 and control forces 
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 are constants. How to represent time-independent Schrödinger equation?

 (Hint : total Hamiltonian of the system is given by:
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18. Schrödinger equation is a first order differential equation in time, the wave function 
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(a). Show that 
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(b).Show that if hamiltonian
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