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Exponential Synchronization of a Class of Neural Networks
With Time-Varying Delays

Chao-Jung Cheng, Teh-Lu Liao, Jun-Juh Yan, and Chi-Chuan Hwang

Abstract—This paper aims to present a synchronization scheme for a
class of delayed neural networks, which covers the Hopfield neural net-
works and cellular neural networks with time-varying delays. A feedback
control gain matrix is derived to achieve the exponential synchronization of
the drive-response structure of neural networks by using the Lyapunov sta-
bility theory, and its exponential synchronization condition can be verified
if a certain Hamiltonian matrix with no eigenvalues on the imaginary axis.
This condition can avoid solving an algebraic Riccati equation. Both the
cellular neural networks and Hopfield neural networks with time-varying
delays are given as examples for illustration.

Index Terms—Chaotic systems, Hamiltonian matrix, neural networks,
synchronization.

I. INTRODUCTION

Both Hopfield neural networks and cellular neural networks have be-
come a field of active research over the past two decades for their po-
tential applications in modeling complex dynamics [1]–[3]. Both them
have been successfully applied in solving various linear and nonlinear
programming problems, as well as in the applications of image pro-
cessing. However, stability analysis in this kind of neural networks is a
very important issue, and several stability criteria have been developed
in the literature [3], [4] and references cited therein.

On the other hand, it has been well known that a chaotic system is
a nonlinear deterministic system with complex and unpredictable be-
havior. Furthermore, chaotic behaviors produced by this kind of neural
networks have also been found and investigated in [5]–[7]. The syn-
chronization of chaotic systems has been extensively studied over the
past two decades due to its potential applications in creating secure
communication systems [8]–[15]. After the drive-response concept in-
troduced by Pecora and Carroll in their pioneering work [8], several
different approaches including some conventional linear control tech-
niques and advanced nonlinear control schemes to achieve synchro-
nization of the chaotic systems or neural networks have been proposed
in the literature [16]–[20]. Recently, a synchronization criterion for
coupled delayed neural networks based on the Lyapunov functional
method and Hermitian matrices theory is derived in [21]. However, the
above synchronization schemes are derived for chaotic systems or for
a class of neural networks with or without constant time delays.

In this paper, a synchronization scheme for a class of neural networks
with time-varying delays is proposed. Based on the Lyapunov stability
theory and drive-response synchronization concept, a control law with
an appropriate gain matrix is derived to achieve synchronization of the
drive-response-based neural networks with time-varying delays. The
elements of the gain matrix are easily determined by checking a certain
Hamiltonian matrix if its eigenvalues lie on the imaginary axis or not
instead of arduously solving an algebraic Riccati equation.
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II. SYNCHRONIZATION PROBLEM FORMULATION

Based on the drive-response concept, the unidirectional coupled
neural networks are described by the following equations:

_xi(t) = � cixi(t) +

n

j=1

aijfj (xj(t))

+

n

j=1

bijfj (xj (t� �j(t))) + Ji;

i = 1; . . . ; n (1)

_zi(t) = � cizi(t) +

n

j=1

aijfj (zj(t))

+

n

j=1

bijfj (zj (t� �j(t))) + Ji + ui(t);

i = 1; . . . ; n (2)

where n � 2 denotes the number of neurons in the network, xi is the
state variable associated with the ith neuron, and cixi(t) is an appropri-
ately behaved function remaining the solution of drive neural networks
(1) bounded. A = (aij)n�n and B = (bij)n�n indicate the intercon-
nection strength among neurons without and with time-varying delay
�j(t) � 0, respectively. The function fi describes the manner in which
the neurons respond to each other, and fi(x) = tanh(x) for Hop-
field neural networks; and fi(x) = 0:5(jx+ 1j � jx� 1j) for cellular
neural networks, respectively. While Ji is an external constant input;
and ui(t) is unidirectional coupled term which is considered as the
control input and will be appropriately designed to obtain a certain con-
trol objective. Furthermore, it is assumed that ��j = max(�j(t)) and
r�j = max( _�j(t)) < 1 for 1 � j � n and t � 0, and the systems (1)
and (2) possess initial conditions xi(t) =  i(t) 2 C([�� �j ; 0];<) and
zi(t) = 'i(t) 2 C(b�� �j ; 0c;<), respectively, where C([���j ; 0];<)
denotes the set of all continuous functions from [�� �j ; 0] to <.

Before proceeding, an assumption regarding fi and definition of ex-
ponential synchronization are given below.

(H) fi : < ! <, i 2 f1; 2; . . . ; ng is bounded, and satisfies the
Lipschitz condition with a Lipschitz constant Li > 0, i.e. jfi(u) �
fi(v)j � Liju � vj for all u, v 2 <.

Definition 1 [22]: The system (1) and the uncontrolled system (2)
[i.e., u � 0 in (2)] are said to be exponentially synchronized if there
exist constants �(�) � 1 and � > 0 such that jxi(t) � zi(t)j �
�(�) sup

�� �s�0

jxi(s) � zi(s)j exp
��t for any t � 0. Constant � is

said to be the degree of exponential synchronization.
The paper aims to determine the control input ui associated with

the state-feedback for the purpose of exponentially synchronizing the
unidirectional coupled identical chaotic neural networks with the same
system’s parameters but the differences in initial conditions.

III. MAIN RESULTS

Let the synchronization error e(t) be defined as follows: e(t) =
[e1(t); e2(t); � � � ; ei(t); � � � ; en(t)]

T , where ei(t) = xi(t) � zi(t).
Therefore, the error dynamics between (1) and (2) can be expressed
by

_ei(t) =� ciei(t)�

n

j=1

aij (fj (ej(t) + zj(t))� fj (zj(t)))

�

n

j=1

bij (fj (ej (t� �j(t)) + zj (t� �j(t))
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�fj (zj(t� �j(t)))))� ui(t);

i = 1; . . . ; n: (3)

The control input associated with the state-feedback is designed as fol-
lows:

[u1(t); u2(t); � � � ; un(t)]
T = 
 [e1(t); e2(t); � � � ; en(t)]

T = 
e (4)

where 
 = (!ij)n�n is the gain matrix to be determined for synchro-
nizing both a drive system and response system. Furthermore, if a new
error êi(t) is defined by êi(t) = e�tei(t), then the dynamics of (3) can
be transformed into the following form:

_̂ei(t) =� (ci � �)êi(t) +

n

j=1

aij �̂j (êj(t))

+

n

j=1

bij�j (êj (t� �j(t)))�

n

j=1

!ij êj(t);

i = 1; . . . ; n (5)

where

�̂j (êj(t)) = e�t�j (ej(t))

�j (êj (t� �j(t))) = e�t�j (ej (t� �j(t)))

�j (ej(t)) = fj(ej + zj)� fj(zj);

�j (ej (t� �j(t))) = fj (ej (t� �j(t)) + zj (t� �j(t)))

� fj (zj (t� �j(t))

For further deriving the exponential synchronization condition on the
control law, the following Lemmas are needed.

Lemma 1: Define a 2n � 2n Hamiltonian matrix H =
�C DDT

�(K1 +K2)� "In CT , where " is sufficiently small and

positive constant, In is a n�n identity matrix C = diag(ci��)+
,
i = 1; 2 � � � ; n, D = [A B], K1 = diag(L2

j ) and K2 =

diag(e2�� L2
j=(1 � r�j )), j = 1; 2 � � � ; n. If �C is a stable matrix

and Hamiltonian matrix H has no eigenvalues on the imaginary axis,
then the algebraic Riccati equation (ARE)

�CTP � PC + PDDTP + (K1 +K2) + "In = 0 (6)

has a symmetric and positive definite solution P for a given � > 0.
Remark 1: The proof is an immediate consequence of the Lemma

4 in the work of Doyle et al. [23], and therefore it is omitted here.
Remark 2: A real matrix �C is stable if and only if all of its

eigenvalues have negative real parts. All eigenvalues of �C defined
in Lemma 1 can be arbitrarily assigned by appropriately choosing the
controller gain matrix 
. Especially, if we choose the gain matrix as
a diagonal matrix 
 = diag(!i) and !i > � � ci, i = 1; 2 � � � ; n,
then the eigenvalues of �C are �(!i + ci � �) < 0, i = 1; 2 � � � ; n,
which implies that �widetildeC is a stable matrix.

Lemma 2 [22]: From the definition of ê(t) and the solution e(t) of
system (3). If the origin of ê(t) is asymptotically convergent, then e(t)
is exponentially convergent with a synchronization degree �.

Main Theorem: For these drive and response neural networks (1)
and (2) which satisfy assumption (H), if the controller gain matrix 

in (4) is suitably designed such that �C is a stable matrix and Hamil-
tonian matrix H defined in Lemma 1 for a given � > 0 has no eigen-
values on the imaginary axis, then the networks (1) and (2) are syn-
chronized exponentially with a degree � at least.

Proof:

Step 1: Transform (5) into a compact form as follows:

_̂e(t) = �Cê(t) +A�̂ (ê(t)) +B� (ê (t� �(t))) (7)

where

ê(t) = [ê1(t) ê2(t) � � � ên(t)]
T 2 <n;

C = diagfci � �g+
; i = 1; 2 � � � ; n;

�̂ (ê(t)) = �̂1 (ê1(t)) ; �̂2 (ê2(t)) . . . ; �̂n (ên(t))
T

2 Rn and

� (ê (t� �(t))) = �1 (ê1 (t� �1(t))) ; �2 (ê2 (t� �2(t)))

. . . ; �n (ên (t� �n(t)))
T

2 Rn:

Since�C is stable and the Hamiltonian matrix H has no
eigenvalues on the imaginary axis. According to Lemma
1, the algebraic Riccati equation (ARE) in (6) has a sym-
metric and positive definite solution P . To confirm that
the origin of (7) is globally asymptotically convergent, a
continuous Lyapunov functional V is defined as follows:

V (t) = ê(t)TP ê(t) +

n

j=1

e2��

1� r�j

t

t�� (t)

�̂2j (êj(s))ds: (8)

It can be easily verified that V (t) is a nonnegative
function over b�� �;+1) and radially unbounded, i.e.
V (t) ! +1 as ê(t) ! +1. Using the definition of
�j(ej(t)), �̂j(êj(t)) and the assumption (H) yields

j�j (ej(t))j � Lj jej(t)j (9)

and

�̂j (êj(t)) = e�t�j (ej(t)) � Lj e�tej(t) = Lj jêj(t)j : (10)

Step 2: Evaluating the time derivative of V along the trajectory
of (7) gives

_V (t) = _̂e(t)TP ê(t) + ê(t)TP _̂e(t) +

n

j=1

e2��

1� r�j

� �̂2j (êj(t))� (1� _�j(t)) �̂
2
j (êj (t� �j(t)))

= ê(t)T (�CTP � PC)ê(t)

+ ê(t)TP A�̂ (ê(t)) +B� (ê(t� �))

+ �̂ (ê(t))T AT + � (ê(t� �))T BT P ê(t)

+

n

j=1

e2��

1� r�j
�̂2j (êj(t)) �

n

j=1

e2��

1� r�j

� (1� _�j(t)) �̂
2
j (êj (t� �j(t))) : (11)

By using the fact XTY + Y TX � XTX + Y TY for
any matrices X and Y with appropriate dimensions, we
obtain

ê(t)TPA�̂ (ê(t)) + �̂ (ê(t))T ATP ê(t)

� ê(t)TPAATP ê(t) + �̂ (ê(t))T �̂ (ê(t))

� ê(t)TPAATP ê(t) +

n

j=1

L2
j jêj(t)j

2

= ê(t)TPAATP ê(t) + ê(t)TK1ê(t) (12)

and similarly

ê(t)TPB� (ê(t� �)) + � (ê(t� �))T BTP ê(t)

� ê(t)TPBBTP ê(t) + � (ê(t� �))T � (ê(t� �))
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= ê(t)TPBBT
P ê(t) +

n

j=1

e
2�t
�
2
j (ej (t� �j(t)))

= ê(t)TPBBT
P ê(t)

+

n

j=1

e
2�� (t)

e
2�(t�� (t))�2j (ej (t� �j(t)))

= ê(t)TPBBT
P ê(t) +

n

j=1

e
2�� (t)

�̂
2
j (êj (t� �j(t)))

� ê(t)TPBBT
P ê(t)

+

n

j=1

e
2��

�̂
2
j (êj (t� �j(t))) : (13)

The last two terms in (11) can be further derived as fol-
lows:

n

j=1

e
2��

1� r�j
�̂
2
j (êj(t)) �

n

j=1

e
2��

1� r�j
L
2
j êj(t)

2 = ê
T
K2ê (14)

and

�

n

j=1

1� _�j(t)

1� r�j
e
2��

�̂
2
j (êj (t� �j(t)))

� �

n

j=1

e
2��

�̂
2
j (êj (t� �j(t))) : (15)

By applying (12)–(15) to (11), we obtain

_V (t) � ê(t)T �CT
P � PC + P (AAT +BB

T )P

+(K1 +K2)) ê(t)

= ê(t)T �CT
P � PC + PDD

T
P + (K1 +K2) ê(t)

=� "ê(t)T ê(t): (16)

According to Lyapunov theory, the last inequality _V (t) �
�"kê(t)k2 indicates V (t) converges to zero asymptoti-
cally as well as ê(t) = 0 is asymptotically convergent.
By Lemma 2, we conclude e(t) converges to zero glob-
ally and exponentially with a rate of �, i.e. ke(t)k �
�(�) exp��t( sup

���s�0
k (s) � '(s)k) is satisfied. This

completes the proof.
Remark 3: In Lemma 1, it is not apparent how one can choose the

matrix 
 such thatH has no eigenvalues on the imaginary axis. There-
fore, it is not simple to find the analytical solutions (if they exit) for the
condition of the Main Theorem. Fortunately, they can be solved nu-
merically in almost all cases by an eigenvalue-solver MATLAB and a
trial-and-error procedure. Furthermore, the sufficient condition in the
Main Theorem would be easily satisfied if Re

max
f�i(�C)g (the max-

imum real part of all eigenvalues of �C) is more negative by suitably
selecting the gain matrix 
.

Remark 4: To obtain the gain matrix 
 in the proposed controller
(4), a computational procedure is proposed as follows.

Step 1: Given a positive constant � and an arbitrarily sufficiently
small positive constant ", choose a suitable gain matrix 

by using any eigenvalue assignment technique such that
�C is a stable matrix.

Step 2: Construct the Hamiltonian matrix H in Lemma 1 and
check if H has no eigenvalues on the imaginary axis.
If so, then the procedure goes to Step 4. Otherwise, the
procedure continues to Step 3.

Step 3: Tune the value of Re
max

f�i(�C)g more negative by se-
lecting a new gain matrix 
 and go back to Step 2.

Step 4: Obtain the state-feedback controller (4).

Fig. 1. Largest Lyapunov exponent of Example 1 versus the delay parameter.

Fig. 2. x � x plot for (a) delay = 0:85 and (b) delay = 0:95 in Example
1.

IV. ILLUSTRATIVE EXAMPLES

To demonstrate the validity of the exponential synchronization con-
dition, three examples are given in this section. The first one involves
synchronizing the cellular neural networks with time-varying delays;
the others involve synchronizing the Hopfield neural networks with
time-varying delays.
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Example 1: A two-dimensional cellular neural network with time-
varying delays is given in [5] and described by the following equation:

_xi(t) = �cixi(t) +
2

j=1

aijfj (xj(t))

+

2

j=1

bijfj (xj (t� �j(t))) ; i = 1; 2 (17)

where ci = 1, A = (aij)2�2 =
1 + �

4
20

0:1 1 + �

4

, B = (bij)2�2 =

�p2�

4
1:3 0:1

0:1 �p2�

4
1:3

and fi(xi) = 0:5(jxi + 1j � jxi � 1j),
respectively. The delays �1(t) = �2(t) = (1 � e�t)=(1 + e�t) are
time-varying and satisfy 0 � �j(t) � 1 = ��j , 0 � _�j(t) � (1=2)j�,
j = 1, 2. The chaotic behavior of the system with delay varying form
0.845 to 1 has been reported in [5]. We employ the algorithm proposed
by Wolf et al. [24] to determine Lyapunov exponents for the system
(17). Fig. 1 shows the largest Lyapunov exponents of (17) by varying
the delay parameter from 0.65 to 1.15. Fig. 2(a) and (b) shows the
x1 � x2 plot with the initial condition [0:1 0:1]T for delay 0.85 and
0.95, respectively. To achieve synchronization, the response system is
designed as follows:

_zi(t) = �cizi(t) +
2

j=1

aijfj (zj(t))

+

2

j=1

bijfj (zj (t� �j(t))) + ui(t); i = 1; 2: (18)

The system satisfies assumption (H) with L1 = L2 = 1. According to
the Main Theorem, we can design !1 � !2 parameter space of the

controller gain matrix 
 = (!ij)2�2 =
!1 0

0 !2
by the com-

putational procedure given in Remark 4 so that the matrix �C =
�1 + �� !1 0

0 �1 + �� !2
is stable and the Hamiltonian ma-

trix H with K1 =
1 0

0 1
, K2 = (e2�� =(1 � r�j ))

1 0

0 1
and

DDT =
405:2826 35:5977

35:5977 5:2926
has no eigenvalues on the imaginary

axis at least for � = 0:1 and " = 10�5. The region of the parameters
!1 and!2 is depicted in Fig. 3. If the controller gain matrix is chosen as


 =
40 0

0 60
, it is easily found that the matrix�C is stable and the

Hamiltonian matrix H has no eigenvalues on the imaginary axis for
the given � = 0:2174. Fig. 4 depicts the synchronization error with
the initial conditions x(s) = [0:1 0:1]T and z(s) = [0:2 � 0:2]T for
(�(1� e�t)=(1 + e�t)) � s � 0, respectively.

Example 2: A Hopfield neural networks with time-varying delays
is given in [7] and its dynamics is expressed by

_xi(t) = �cixi(t) +
2

j=1

aijfj (xj(t))

+

2

j=1

bijfj (xj (t� �j(t))) ; i = 1; 2 (19)

where ci = 1, A = (aij)2�2 =
2 �0:1
�5 2

, B = (bij)2�2 =

�1:5 �0:1
�0:2 �1:5 and fi(xi) = tanh(xi), respectively. The delays

�1(t) = �2(t) = 0:6(1 � cos(t)) are time-varying and satisfy 0 �
�j(t) � 1:2 = ��j , �0:6 � _�j(t) � 0:6 = r�j , j = 1, 2. The chaotic

Fig. 3. Designed ! �! parameter space for a given � = 0:1 (Example 1).

Fig. 4. Synchronization error for � = (1� e )=(1 + e ) (Example 1).

Fig. 5. Largest Lyapunov exponent of Example 2 versus the delay parameter.

behavior of the system with constant delay �1 = �2 = 1 has been
pointed out [7]. Fig. 5 shows the largest Lyapunov exponents of (19)
by varying the delay parameter from 0 to 1.2. Fig. 6(a) and (b) shows
the x1 � x2 plot with the initial condition [0:4 0:6]T for delay 1 and
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Fig. 6. x � x plot for (a) delay = 1 and (b) delay = 1:1 in Example 2.

Fig. 7. Designed ! �! parameter space for a given � = 0:1 (Example 2).

1.1, respectively. To achieve synchronization, the response system is
designed as follows:

_zi(t) = �cizi(t) +

2

j=1

aijfj (zj(t))

Fig. 8. Synchronization error for � = 0:6(1� cos(t)) (Example 2).

+

2

j=1

bijfj (zj (t� �j(t))) + ui(t); i = 1; 2: (20)

The system satisfies assumption (H) with L1 = L2 = 1. Ac-
cording to the Main Theorem, we apply the computational
procedure given in Remark 4 to design !1 � !2 parameter

space of the controller gain matrix 
 =
!1 0

0 !2
so that.

the matrix �C =
�1 + �� !1 0

0 �1 + �� !2
is stable

and the Hamiltonian matrix H with K1 =
1 0

0 1
and

K2 = (e2�� =(1 � r�j ))
1 0

0 1
and DDT =

6:27 �9:75

�9:75 31:29
has no eigenvalues on the imaginary axis at least for the given � = 0:1
and " = 10�5. The region of the parameters !1 and !2 is depicted in

Fig. 7. If the controller gain matrix is chosen as 
 =
10 0

0 30
, it is

easily found that the matrix �C is stable and the Hamiltonian matrix
H has no eigenvalues on the imaginary axis for the given � = 0:6387
and " = 10�5. Fig. 8 depicts the synchronization error with the
initial conditions x(s) = [0:4 0:6]T and z(s) = [0:35 0:65]T for
�0:6(1� cos(t)) � s � 0, respectively.

Example 3: A four-dimensional Hopfield neural networks with
time-varying delays is given as follows:

_xi(t) = �cixi(t) +

4

j=1

aijfj (xj(t))

+

4

j=1

bijfj (xj (t� �j(t))) ; i = 1; 2; 3; 4 (21)

where ci = 1, A = (aij)4�4 =

0:85 �2 �0:5 0:5

1:8 1:15 0:6 0:3

1:1 1:21 2:5 0:05

0:1 �0:4 �1:5 1:45
and fi(xi) = tanh(xi), respectively. The chaotic behavior of
the system with B = (bij)4�4 = (0)4�4 and �j(t) = 0
has been pointed out in [25]. In this example, we choose B =

(bij)4�4 =

�0:5 �1 0:5 0:2

0:4 �0:1 0:3 0:3

0:1 �0:8 0:2 0:05

0 �0:4 �0:6 �0:5

and the time-varying

delays as �j(t) = 0:5(1 � cos(t)), j = 1, 2, 3, 4, which satisfy
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Fig. 9. Designed ! �! parameter space for a given � = 0:1 (Example 3).

Fig. 10. Synchronization error for � = 0:5(1� cos(t)) (Example 3).

0 � �j(t) � 1 = ��j , �0:5 � _�j(t) � 0:5 = r�j , j = 1, 2, 3, 4. To
achieve synchronization, the response system is designed as follows:

_zi(t) = �cizi(t) +

4

j=1

aijfj (zj(t))

+

4

j=1

bijfj (zj (t� �j(t))) + ui(t); i = 1; 2; 3; 4: (22)

The system satisfies assumption (H) with L1 = L2 = L3 = L4 = 1.
If we choose the synchronization degree � = 0:1 and the controller
gain matrix 
 = diag(!i), i = 1, 2, 3, 4 with !1 = !3 and !2 = !4,
then the four sub-matrices of H are obtained as follows:

K1 = I4; K2 = 2e0:2I4

�C = diag(�1 + 0:1� !1;�1 + 0:1� !2;�1 + 0:1� !1;

� 1 + 0:1� !2)

and DDT =

6:7625 �0:81 �1:85 2:36

�0:81 5:3625 5:0815 �1:035

�1:85 5:0815 9:6191 �3:8765

2:36 �1:035 �3:8765 5:2925

.

The controller parameters !1 � !2 are determined by the computa-
tional procedure so that the matrix �C is stable and the Hamiltonian

matrix H has no eigenvalues on the imaginary axis for the sufficiently
small constant " = 10�5. The region of the parameters !1 and !2
is depicted in Fig. 9. If the controller parameters are chosen as !1 =
!3 = 10 and !2 = !4 = 15, the synchronization error of the systems
(21) and (22) with the initial conditions x(s) = [0:1 �0:1 0:1 0:2]T

and z(s) = [0:15 0:05 0:15 0:25]T for �0:5(1� cos(t)) � s � 0,
respectively, is shown in Fig. 10.

V. CONCLUSION

This paper has presented a sufficient condition to guarantee the
globally exponential synchronization for a class of neural networks
including Hopfield neural networks and cellular neural networks with
time-varying delays. A feedback control law is derived to achieve the
exponential synchronization of drive-response structure of the chaotic
neural networks; and its feedback gain matrix is designed to satisfy a
certain Hamiltonian matrix without eigenvalues on the imaginary axis
instead of directly solving an algebraic Riccati equation.
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